Received: August 30, 1985; accepted: September 19, 1985

TRIFLUOROMETHYL-AMINOBORANES

H. BURGER, M. GRUNWALD and G. PAWELKE

Anorganische Chemie, FB 9, Universität-Gesamthochschule, D-5600 Wuppertal 1 (F.R.G.)

SUMMAR Y

The trifluoromethyl aminoboranes $CF_{3B}[N(CH_3)_2]_2$ (I), $CF_{3B}[N(CH_3)CH_2]_2$ (II) and $(CF_3)_2BN(CH_3)_2$ (III) have been prepared in yields between 8 and 25% by the reaction of the respective bromoboranes with a trifluoromethylating reagent prepared from $P[N(C_2H_5)_2]_3$ and CF_3Br in CH_2Cl_2 . Mass, NMR, IR and Raman spectra are reported. The compounds (I) to (III) are monomeric and stable at room temperature, thermal decomposition beginning at about 100°C.

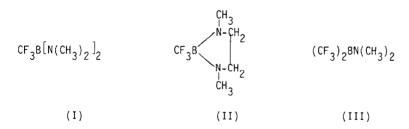
INTRODUCTION

Bonds between CF₃ groups and electropositive elements E are difficult to form because repulsion between the positively charged C atom of the CF₃ group and the element E weakens the E - C bond [1]. Elimination of :CF₂ and formation of E - F derivatives is the usual pathway for the easy decomposition of such E - CF₃ compounds. For trifluoromethylboron compounds (E = B), the positive atomic charge on boron may be removed either by coordination of a fourth ligand or eventually by dative $(p \rightarrow p)\pi$ bonds. Thus, it is not surprising that the majority of the hitherto known trifluoromethylboron compounds is derived from tetracoordinate boron, e.g. CF₃BF₃⁻ [2], (CF₃)₂BF₂⁻[3] CF₃BF₂·N(CH₃)₃ [4].

No trifluoromethyl derivative of tricoordinate boron has been reported except CF_3BF_2 and its precursor $CF_3B(n-C_4H_9)_2$ [5,6]. These compounds first prepared in 1961 were however not fully characterized, and a discrepancy concerning the properties of CF_3BF_2 N(CH_3)₃ from which CF_3BF_2 was prepared has been noted [4].

Keeping in mind the possible increase in stability of CF_3^B compounds by ligands capable of dative $(p \rightarrow p)\pi$ bonding, we attempted the synthesis of

0022-1139/86/\$3.50


© Elsevier Sequoia/Printed in The Netherlands

trifluoromethyl aminoboranes $CF_3B(NR_2)_2(A)$ and $(CF_3)_2BNR_2(B)$. With this goal, the respective haloboranes were reacted with different trifluoromethylating agents. In the following we report on the synthesis of the first three reasonably stable and fully characterized trifluoromethylboranes and some of their physical properties.

SYNTHESES

Preparation of trifluoromethyl aminoboranes (A) and (B) was attempted by transfer of CF₃ groups to the appropriate aminoboron halides R_2NBX_2 and $(R_2N)_2BX$, X = Cl and Br. Searching for a suitable CF₃ transfer agent, $Hg(CF_3)_2$, $(CH_3)_3SnCF_3$ and Burton's reagent prepared from $(C_6H_5)_3P$, CF_2Br_2 and KF in triglyme [7] were tested. Though these reagents have been successfully employed for the synthesis of CF₃ derivatives of group IV elements and tetracoordinated boron, they did not afford an (A) or (B). Only very low yields of $CF_3B[N(CH_3)_2]_2$ (I) were obtained from the photochemical reaction of $B_2[N(CH_3)_2]_4$ with CF_3I .

Substantial though unsatisfactory yields of (I), the analogous borolidine (II) and bis(trifluoromethyl) dimethylaminoborane (III) were obtained by reacting the appropriate halides at low temperature with the reagent prepared according to Ruppert et al. [8] from $P[N(C_2H_5)_2]_3$ and CF_3Br in the presence of a suitable solvent, preferentially CH_2Cl_2 .

This reagent evidently reacts as a phosphonium salt (IV) by transfer of its CF_3^- anion [8], eqn. (1):

$$P[N(C_{2}H_{5})_{2}]_{3} + CF_{3}Br \longrightarrow \{\lfloor (C_{2}H_{5})_{2}N \rfloor_{3}PBr^{+} CF_{3}^{-}\}$$
(IV)
(IV) + XB< $\longrightarrow CF_{3}B < + \lfloor (C_{2}H_{5})_{2}N \rfloor_{3}PBr^{+} X^{-}$ (1)

The reagent (IV) has been successfully employed for the synthesis of tri-fluoromethylsilicon compounds, and yields up to 90% have been reported $\begin{bmatrix} 8 \end{bmatrix}$.

Much poorer yields, 20, 25 and 8% for (I), (II) and (III), respectively, were obtained for trifluoromethyl aminoboranes. Several reasons are responsible for the limited selectivity of the reaction eqn. (1). In agreement with previous observations [9], the reagent (IV) itself isomerizes to $F_3CP[N(C_2H_5)_2]_3^+Br^-$, and the cation $FP[N(C_2H_5)_2]_3^+$ as well as $F_3CP[N(C_2H_5)_2]_2$ are formed in minor quantities. Furthermore, the solvent (CH_2Cl_2) may be attacked by (IV), and HCF₃ is formed in varying amounts depending on the reaction conditions.

The aminoboron bromides are more suited as starting materials than the corresponding chlorides because, though both react in a comparable way, unreacted bromides can be easier separated by distillation from the desired reaction products.

Ligand scrambling involving both the boron and phosphorus atoms also accounts for the poor yields. Thus, $B[N(CH_3)_2]_3$ has been identified as major by-product in the synthesis of (I), while (I) is found in the reaction of $(CH_3)_2NBBr_2$ with (IV). In the latter reaction, cleavage of the solvent CH_2Cl_2 by $(CH_3)_2NBBr_2$ is more pronounced than in the synthesis of (I) and (II). This cleavage is evident in the formation of mixtures of (yet unidentified) by-products which are similarly volatile as (III) and which contain $N(CH_2)_2$ groups, boron, CF groups and ~20% chlorine, but no bromine.

The compounds (I) to (III) are separated from the reaction mixture by condensation <u>in vacuo</u> and purified by repeated distillation employing a slit tube column. However, purification is accompanied by loss of material due to dismutation.

PROPERTIES

Compounds (I), (II) and (III) are colourless liquids which are readily soluble in organic solvents. Their physical properties are set out in Table 1. They are apparently monomeric and readily decomposed by H_20 , HCF₃ being formed. They are thermally stable at room temperature, but decomposed at elevated temperature under elimination of :CF₂. Heating of (I) to 140°C for 80h results in 40% decomposition and formation of FB[N(CH₃)₂]₂, while a total of 15% of monomeric and dimeric fluoroborolidine [10] were identified by ¹⁹F NMR spectroscopy when (II) was heated to 100°C for 40h. The thermolysis of (III) (65h at 118°C) yields a black, obviously polymeric material in which monomeric and dimeric $F_2BN(CH_3)_2$ were identified by ¹⁹F NMR spectroscopy.

TABLE	I

92

	Physical	properties	and	NMR	spectra	of	compounds	(1)	to	(111)
--	----------	------------	-----	-----	---------	----	-----------	-----	----	-------

	I	CF ₃ B[N(CH ₃) ₂] ₂ (I)	CF ₃ B[N(CH ₃)CH ₂] ₂ (II)	(CF ₃) ₂ BN(CH ₃) ₂ (III)
bp [°C/Torr]		25/16	47/30	25/25
1 _H a				
δ(CH ₃ /CH ₂) [рр	om]	2.72	2.33/2.87	2.70
⁵ J(HF) [H	Ιz]	0.7		
19 _F b				
δ [pr	[mc	-61.0	-62.3	-63.0
¹³ c ^c				
б(СН ₃ /СН ₂) [рр	om]	39.9	33.4/51.6	41.8
¹ J(CH ₃ /CH ₂) [H	lz]	135	135/140	140
δ(CF ₃) [pp	om]	128.2	126.7	125.5
¹ J(CF) [H	lz]	301	297	299
¹ J(CB) [H	Ιz]	99	97	100
11 _B d				τ _α εγία μ
δ [pr	om]	26.3	24.9	30.2
¹⁴ Ne				
δ [pr	om]	- 337		

^aAt 90 MHz, ext. std. TMS. ^bAt 84.67 MHz, ext. std. CFC1₃. ^CAt 75.47 MHz, int. std. CDC1₃ = 77 ppm. ^dAt 25.52 MHz, ext. std. $BF_3 \cdot O(C_2H_5)_2$. ^eAt 5.75 MHz, ext. std. NO_3^- .

<u>Mass spectra.</u> (I) to (III) were investigated by E.I. mass spectroscopy. M^+ peaks were observed for (I) and (II) (73 and 12% relative intensities), while $(M-F)^+$ (12%) is the highest mass in the fragmentation of (III). Basis peaks are $(N(CH_3)_2)^+$, $(M-CF_2)^+$ and $(M-2CF_2)^+$ for (I), (II) and (III), respectively. The $(M-CF_2)^+$ peak of (I) has 56% relative intensity. The mass spectra are in agreement with the proposed constitution. The fragmentation pattern underscores the ease of thermal difluorocarbene elimination.

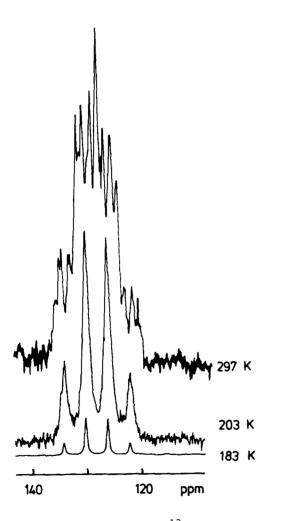


Fig. 1. CF_3 signal in the 13 C NMR spectrum of (I) at different temperatures.

<u>NMR spectra.</u> NMR spectra of the ¹H, ¹⁹F, ¹³C, ¹¹B and ¹⁴N nuclei of (I) to (III) have been recorded (Table 1). They are in agreement with the suggested constitution. In contrast to the fluoroalkyl borate anions [4] the ²J(BF) coupling is not resolved in tricoordinate CF₃-substituted boranes, only broad absorptions being observed in the ¹⁹F and ¹¹B NMR spectra. Therefore most information is obtained from the ¹³C NMR spectra which were recorded at different temperatures. Figure 1 illustrates the ¹³C(CF₃) resonance of (I) at temperatures between 297 and 183K. At 183K, relaxation of the boron nucleus is fast, and a quartet with an intensity ratio of 1:3:3:1 and ¹J(¹⁹F¹³C) of 301 Hz is observed. On raising the temperature, coupling with the boron nucleus occurs. At 297K, a multiplet with ¹J(¹³C¹¹B) of 99 Hz is observed.

<u>Vibrational spectra.</u> The vibrational frequencies of (I), (II) and (III) are given in Table 2. The Raman spectrum of (III) is illustrated in Fig. 2. The normal vibrations of the heavy atom skeletons of (I) and (III) without consideration of the CH₃ vibrations were assigned with the help of a normal coordinate analysis. The results are only discussed briefly. Details will be given in context with an electron diffraction investigation now in progress.

The BN stretching vibrations are easily detected by their 10/11B shifts at 1552/1530, 1425/1404 (I), 1545/1522, 1430/1420 (II) and 1602/1571 cm⁻¹ (III). The symmetric CF stretching vibrations are located at 1280 (I), 1300 (II) and 1273/1185 cm⁻¹ (III), whereas their asymmetric counterparts are observed between 1100 and 1150 cm⁻¹. The latter are assigned by comparison

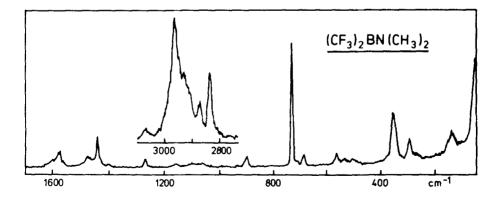


Fig. 2. Raman spectrum of $(CF_3)_2BN(CH_3)_2$.

94

with the corresponding bromoboranes, in which the CF₃ vibrations are absent, while the other skeletal vibrations appear in corresponding regions. Near 950 cm⁻¹ several bands with ^{10/11}B shifts are observed and assigned to BC stretching vibrations. In the Raman spectrum, the most intense line is associated with the symmetric CF₃ deformation observed at 715 (I), 721 (II) and 729 cm⁻¹ (III). In (III), the presence of a second CF₃ group is strongly suggested by the appearance of an infrared band at 690 cm⁻¹, which is assigned to the out-of-phase symmetric CF₃ deformation. Vibrations < 700 cm⁻¹ with significant ^{10/11}B shifts correspond to out-of-plane vibrations of the boron atom. They are located at 696/674 (I), 675/650 (II) and 712/690 cm⁻¹ (III). The CF₃ group vibrations δ_{as} and $\rho(CF_3)$ are associated with infrared absorptions near 510 and 350 cm⁻¹, but according to normal coordinate analysis they are mixed with other skeletal bending modes.

EXPERIMENTAL

<u>Trifluoromethyl-bis(dimethylamino)borane (I)</u> - 60.0g (402 mmol) CF_3Br are condensed upon a solution of 24.9 g (139 mmol) $BrB[N(CH_3)_2]_2$ in 30 ml CH_2Cl_2 at -70°C and 43.0 g (174 mmol) $P[N(C_2H_5)_2]_3$ added within 15 min. The mixture is warmed to room temperature within 3h and CH_2Cl_2 distilled off. Less volatile products are collected <u>in vacuo</u> (0.1 Torr) in a -78°C trap, while the residue is held at 60°C. The crude product is repeatedly distilled <u>in vacuo</u> ($p \le 20$ Torr) employing a slit tube column. Yield 20%. $C_5H_{12}BF_3N_2$. Required/found; %C, 35.75/36.0; %H, 7.20/7.2; %B, 6.44/6.5; %F, 33.93/33.7; %N 16.68/16.8.

<u>Bis(trifluoromethyl)-dimethylaminoborane (III)</u> At $-78\degree$ C, 104.3g (700 mmol) CF₃Br are condensed upon a solution of 61.0g (284 mmol) Br₂BN(CH₃)₂ in 150 ml CH₂Cl₂, the solution cooled to $-100\degree$ C and 140g (567 mmol) P[N(C₂H₅)₂]₃ added within 1.5h, stirred at $-78\degree$ C for lh and warmed to room temperature within 2h. Volatile products are condensed in a $-78\degree$ C trap at 0.01 Torr, CH₂Cl₂

TABLE 2 Vibrational sp≘ctr		a of (I) to (III) (cm ⁻¹)				
(I), IR	(I), Raman	(II), IR	(II), Raman	(III), IR	(III), Raman	Assignment
3037 vw 3009 w 2941 m 2900 m	3005 wp 2942 mp 2898 mp	3015 w 2970 m 2935 m	3008 vw 2945 w 2922 w	3008 vvw 2978 v 2960 w 2925 w	2985 mp 2930 wp	v(CH)
	2865 s 2840 vwp 2816 mp 2793 mp	2902 sh 2875 s 2820 s	2884 п 2857 w 2813 п	2885 vw 2838 w	2878 wp 2835 wp	
1552 1530 s	-	1545 1522 s		1602 w 1571 w	1603 mp 1573 mp	$v(BN)11_B^{10}$
1472 m	1492 w 1470 m 1450 m	1463 s	1515 m 1463 s 1436 s	1534 w 1472 w 1425 w	1475 m 1442 s	$\delta_{as}(CH_3)$
1425 1404 s	1422 mp 1407 mp	1430 1420 ^S				v(BN)11B
	1395 sp	1360 w	1361 w	1406 w 1350 m 1333 m	1400 wp	δ _s (CH ₃) ν _{as} (NC)
1280 m 1204 s	1275 wp	1300 s 1220 s	1304 vw	1273 s	1270 mp	vs (CF ₃) vs (NC)
1145 m 1110 vs	1148 vwp 1108 vwp	1110 vs		1185 s 1150 vs		vs (CF ₃) v(NC) v_c(CF ₃)
				1106 vs		$v_{as}(cF_3)$

р(СН ₃)	v _a (CF ₃)	v(BN,C) ¹⁰ ¹⁰ ¹¹ ^B	ر (cc) م _ر	ν(Β̈́Ν,C) ¹⁰ Β 11 ^B	δ(CH ₂)	δ _ξ (CF ₃)	$\delta_{op}(B) \frac{10}{11R}$	δ _ε (CF ₃)	δ(CH ₂)	vs (CN)	$\delta(NC_{2})$	٤ _٩ (۲٦)	δ(BNC)	$\rho(CF_3)$	6 (CNC)	6(CBN)/(CBC)
1070 vw	1060 vw			907 898 mp		729 vsp		687 m		564 mp		505 wp	380 sh	352 sp	294 mp	138 mp
1075 m 1060 w		935 913 s				729 w	712 690 m	0690 m				503 w				
1078 w		985 w	936 m			721 sp			620 w	559 s				351 w	279 w 260 w	
1085 vs		986 m	937 w		846 vw 786 vw 750 w	719 m	675 m 650 m		617 w	557 m		505 m	395 vw	348 vw	278 w 257 vw	
1071 w				919 903 mp		715 vsp				565 mp		515 wp	380 mp	340 mp	290 wp	175 vwp 135 vwp
1073 vs 1046 m		920 907 m				716 w	696 674 w				563 w	512 w	385 vw		285 w	

distilled off and (III) obtained by distillation <u>in vacuo</u>, yield 8%. C₄H₆BF₆N. Required/found; %C, 24.91/25.8; %H, 3.14/3.3; %B 5.60/5.4; %F, 59.09/57.5; %N, 7.26/7.5.

Physical measu	rements
	Varian CH5 and Varian MAT 311; EI; 70eV $^{1}\mathrm{H},~^{19}\mathrm{F}$ Varian EM 390; $^{13}\mathrm{C}$ Bruker WP 300; $^{11}\mathrm{B}$ and $^{14}\mathrm{N}$ Varian
	CFT 80.
	Cary 82, 1mm i.d. capillaries, excitation Ar^+ 514.5 nm (II) and Kr^+ 647.1 nm (I, III), $\pm 2 \text{ cm}^{-1}$.
IR spectra:	Perkin-Elmer 580B, 200 - 4000 cm ⁻¹ , 18.7 cm gas cells, KBr
	and polythene windows, $\pm 2 \text{ cm}^{-1}$.

ACKNOWLEDGEMENTS

We wish to thank Dr. J. Hahn, University of Köln, for recording 13 C NMR spectra. The Ministerium für Wissenschaft und Forschung Nordrhein-Westfalen and the Fonds der Chemie are thanked for support.

REFERENCES

- 1 H. Oberhammer, J. Fluorine Chem., 23 (1983) 147.
- 2 R.D. Chambers, H.C. Clark and C.J. Willis, J. Am. Chem. Soc., <u>82</u> (1960) 5298.
- 3 G. Pawelke, F. Heyder and H. Bürger, J. Organometal. Chem., 178 (1979) 1.
- 4 H. Bürger, M. Grunwald and G. Pawelke, J. Fluorine Chem., 28 (1985) 183.
- 5 T.D. Parson, J.M. Self and L.H. Schaad, J. Am. Chem. Soc., <u>89</u> (1967) 3446.
- 6 T.D. Parson, E.D. Baker, A.B. Burg and G.L. Juvinall, J. Am. Chem. Soc., 83 (1961) 250.
- 7 D.J. Burton and J.L. Hahnfeld, Fluor. Chem. Rev., 8 (1977) 119.
- 8 I. Ruppert, K. Schlich and W. Volbach, Tetrahedron Lett., <u>25</u> (1984) 2195.
- 9 W. Volbach, Dissertation, Bonn (1984).
- 10 K. Anton, H. Fußstetter and H. Nöth, Chem. Ber., 117 (1984) 2542.